公告:
Collapsar 超级元老 发消息
发表于 10-2-11 05:26:21 |显示全部楼层 来自: 加拿大
本帖最后由 Collapsar 于 10-2-11 13:15 编辑

第一章 轮胎 http://bbs.rcfans.com/viewthread.php?tid=254615


2.1
弹簧 (Springs)
(译者注:请参照http://www.rcfans.com/?p=155

最常见的弹簧首推线圈弹簧(如下图所示)。弹簧通常与阻尼器搭配形成一个弹簧-阻尼避震单元。弹簧作为一种弹性装置,抵制在其伸缩方向上的运动。这个抵制力的大小与弹簧一端的位移成正比,用数学公式表示为:弹力= 位移 x 弹性系数。具有较高弹性系数的弹簧一般来说较硬,反之则较软。
shsprings[1].gif
hbook1[1].gif

渐进性(progressive)弹簧的弹性系数随着弹簧行程的增加而加大。而逆反性(regressive)弹簧的弹性系数随着弹簧行程的增大而减小。绝大多数的线圈弹簧都多多少少带有一点渐进性。原因在于,当弹簧受压时,一部份线圈,尤其是处在弹簧两端的线圈,将会互相接触,因而活动线圈线为之减少。

在纯数学的角度上,弹簧并不复杂,但在操控上就是另外一回事了。问题在于弹簧工作在两个维度:左右和前后。比方说:装备软弹簧的车,在快速过弯时会发生巨大的车身滚动;在急刹车时会急剧下潜(车头下沉,请参照:
http://www.rcfans.com/?p=163);而在急加速时会强烈下蹲(车尾下沉,请参照:http://www.rcfans.com/?p=164)。这一切都是因为弹簧必须吸收车行进中产生的扭力的缘故(参照下面的滚动中心防蹲两节)。为了吸收特定的外力,软弹簧需要压缩较长的距离(这一点,从上面的图表中可以看得出来:横座标表示压缩量,纵座标则代表弹力)。

当你读完所有的章节,你将拥有独立于车的纵向平衡来调整横向平衡的能力。眼下你只要记住弹簧的硬度影响所有的设置就行了,包括颠簸路的操控性,滚动硬度,倾斜硬度(
pitchstiffness,译者注:应该是指车头抬起或下沉)等等。

一般来说,车装备较硬弹簧的一端抓地较低;反之,装备较软弹簧的一端抓地较高。这是因为弹簧抵制重量转移的缘故,包括横向和纵向的重量转移。车过相同的弯时,加速或刹车对较硬弹簧的压缩量相对较小,由此导致较少的车架滚动,也就是较少的重量转移;相对应的是,软弹簧会被大幅度压缩,从而导致更多的重量转移。

然而,单单一组弹簧不能适应所有的路况。路面上有小而多的突起时,硬弹簧会让车开起来蹦蹦跳跳的,这样一来会失去一些抓地。在这种路况下,你需要较软的弹簧,软弹簧可以保持轮胎和路面的接触。在平滑的路面上,就需要硬弹簧了,硬弹簧会提升车的弹跳能力和响应速度。


2.2 阻尼器 (Damping)
阻尼器用于吸收与悬挂系统运动相关的能量。悬挂系统的运动源自于颠簸的路面,车的横向或纵向的加速度等。没有阻尼器,悬挂系统的运动量将不停增长,最终产生一些滑稽的结果。就能量而言,阻尼器吸收绝大多数车在运动过程中接收的能量;与弹簧不同的是,弹簧先存储能量,随之释放能量。可以想象一辆没有阻尼器的车在颠簸路上的行为,地面突起对车胎的冲击会让悬挂系统抖得象风中的树叶,这当然不是一件好事情。阻尼器能吸收多余的能量,使得车胎尽可能保持与地面接触。这也意味着阻尼器应该与弹簧相匹配,不要用非常硬的弹簧搭配非常软的阻尼器,也不要用非常软的弹簧搭配非常硬的阻尼器。当然了,两者的轻微失配却可以制造一些有趣的效果。较硬的阻尼器让车相当稳定,它会放慢车的倾斜(pitch)和滚动,让操控感平顺些。请注意,阻尼器只能影响倾斜和滚动的速度,而不能改变它们的程度。如果想减少车的滚动(改变程度),应该调节的是防倾杆或者弹簧等,而不是阻尼器。

阻尼率的调节可以通过调节悬挂的反弹速度来进行:一辆装备了软弹簧硬阻尼器的车,在受到向下的压力的时候它的反弹速度是非常缓慢的;反之,使用硬弹簧配软阻尼器,车的反弹将非常迅速。同样的情况也发生在出弯的时候:车在转弯时,重量发生转移,车架因而滚动/下潜;而当回直方向盘,转向力消失了,车架将恢复到原来的位置。以上涉及的滚动和恢复的速度受制于阻尼器的强度。这么看来,装备了软弹簧硬阻尼器的车,当出弯回方向时,车还想继续转弯;而当走直线时打方向,车还保持继续走直线的倾向。总体来说,车的响应速度会很慢,但车的操控则非常平顺。反之,使用硬弹簧配软阻尼器的车有较高的响应速度,车子会对车手发出的命令非常积极迅速地作出回应。

由于地面的不平,只使用一套弹簧-阻尼器组合是不现实的。地突小而多的的路面要求较软的弹簧和阻尼器;但你不能把这套组合用在有粗大突起的路面上,否则你的车底盘将时常和地面发生亲密接触,换句话说你应该换上较硬的弹簧和阻尼器。在非常平顺的路面上,就可以使用非常硬的弹簧和阻尼器了。

当然事情没有这么简单。即使是RC车上所使用的简易阻尼器,也有高速和低速之分。在这里提到的速度并非车的运行速度,而是指活塞杆相对于阻尼器主体的运动速度。在大多数的真车上,这个高低速的区别由活塞上的弹簧阀门组控制;而在RC车中阻尼单元就简单得多,高低速的差别主要来自于避震油的属性。

如果说流体力学里有什么知识车手是应该掌握的话,那应该是流体的两种流动方式:平流和动荡流(laminar and turbulent)。平流是指流体的微粒平行移动,永不相交,这种流动方式在流速较低的情况下发生,这种流质通常有较高的黏性,其表面是平顺圆滑的。动荡流是指液体的微粒移动比较混乱并造成漩涡。动荡流更易于发生在流速高,流质稀薄,表面粗糙的情况下。动荡流要求更多的能量(或者说浪费更多的能量,看你怎么看了),因为微粒间的摩擦力相对更大。平流的压力(对阻尼器来说,抵制力)和流速成正比;动荡流的压力则与速度的平方成正比。事实上,这两种流态之间并无明显的界线,而是存在一个较大的灰色区域。预测是否动荡流可以通过检验Reynolds值,其定义是:Re = D x V /n D是流体的直径,V指流体的速度,而n代表了流体的黏度。如果运算结果Re小于2000,流体可以当平流对待;20004000之间,平流和动荡流之间;大于4000则多数属于动荡流。

t3piston[1].gif

让我们来看一个典型的
RC车阻尼器(见上图),具备某种黏度的避震油以某种的速度通过某种口径的活塞孔(译者注:请参照http://www.rcfans.com/?p=156)。一些油在活塞外流动,制造出的几乎都是平流,活塞和阻尼器主体的间隙比较狭小,因此产生很大阻力。流过活塞孔的油,却非常难预测。当活塞杆的速度很低时会产生平流,反之将产生动荡流。这两种流什么时候发生转换难以预料,但却很容易感觉得到。原因是,在平流下,避震的抵抗力和活塞杆的速度是成正比的;在动荡流下,则与速度的平方成正比。当平流转换成动荡流时,感觉象是什么东西被上了锁似的,这时候抵抗力的变化非常明显。这种转换过程有时被称为死锁(pack)感觉仿佛避震锁死packsup)似的。

这种效应时而非常有用的,时而不受欢迎。它能防止车从一个弹跳的动作降落时不会重重摔在地上,但它也令车在高速过颠簸路时弹跳不已。因此把这项设置调校合适了是极其重要的。

正确的作法是选择合适的活塞和避震油。小活塞孔配低黏度的避震油,以及大活塞孔配高黏度的避震油,这两种配置的静态性质是一样的。当你用手下压车时感觉上一样;车在低速下的姿态转换如过平滑弯或过地突较少的路面等,车的操控性是一致的。这两种配置的最大的区别体现在高速下的表现:第一种配置死锁会很快发生,这是低黏度油在高流速下的结果(等量的油在同样的时间通过较小的孔,速度必然提升) 。第二种配置对动荡流有较高的抵制作用,因高黏度的油流速相对较低;因此,动荡流只能在活塞杆速非常高时才能发生,要不就根本不会发生。

活塞和避震油的选择在很大程度上取决于赛道的布局。大幅度以及危及车架的弹跳要求较小的活塞孔径,这样可以防止车狠狠地摔在地上,但这通常也会让车变得非常不稳定。在另一方面,如果赛道很颠簸,避震锁死会让车弹跳不已,因此极不稳定。这种环境下,应该使用较大的活塞孔。

判断活塞孔径是过大或过小并非想象的那么简单,因为避震并不与地面直接接触,而且悬挂系统本身也具备一定的弹性。悬挂臂并非无比坚硬,轮毂也是如此,因而都会带有一定的弹性,也就是说悬挂系统作为一个整体其本身也能造成一定程度的反弹。再者,轮胎也有较大弹性,虽然这种弹性的形式相对来说很小。当车弹跳后从天而降时这种弹性效应尤其明显。如果车落地后只稍稍反弹从而使车的底盘不会接触地面,这意味着活塞孔太小,从而令避震太快锁死,这时候余下的冲击力不得不由悬挂臂和轮毂来分担。
Collapsar 超级元老 发消息
发表于 10-2-11 05:26:34 |显示全部楼层 来自: 加拿大
本帖最后由 Collapsar 于 10-2-12 08:14 编辑

2.3 滚动中心 (Roll center)
预测轮胎在外力作用下的反应并非易事。悬挂系统各个部件可以吸收,分散,或者把外力转换成扭力。为了避开这些不可知因素,可以尝试找到车的滚动中心并从那里着手预测车的反应。滚动中心是空间中一个想像的点,可以把它想像成一个中心枢纽,当车过弯时车身将绕着这个枢纽滚动。看起来仿佛悬挂系统强迫车架绕着这个空间中的一点转动。

让我们先看看滚动中心的工作原理。肯尼迪定理(theorem of Kennedy)告诉我们三个通过枢纽相联的物体,最多存在三个运动极(点),而且这三个极是在同一条直线上的。什么叫极呢?想像一下地球的两极,当地球转动时,两极不动。换句话说,地球绕着两极之间的一条虚拟轴在转动。这是一个三维空间的类比,就滚动中心而言,刚开始你只需要两维就够了(以下的图都是两维平面图)。所以一个或一组物体的极可以想像成它们的外接圆的圆心。
t3rride[1].gif
RC1[1].gif

(译者注:以下推导滚动中心的过程表面上看稍显复杂,但其实是很简单的。如果理解上有困难,可以回过头看看这里。推导过程是这样的:先应用肯尼迪定理通过蓝线上的两个已知极点找到红线及红线的交点,即第三个极点;再次应用肯尼迪定理通过已经找到的红色极点和轮胎下的另一个极点,找到第三个极点即滚动中心。)

典型的RC车的悬挂系统包含有下A臂和上连杆,我们可以看到许多部件通过枢纽联系在一起,这些部件包括车架,上连杆,A臂,和轮座等等。在这里,我们把轮座,车轴和轮子当成一个整体来看待。让我们看看车架,上连杆和轮座:这三者通过枢纽联系在一起,因此肯尼迪定理在这里适用。上连杆和轮座的极就是把它们联系在一起的球头;上连杆和车架的极也是联系它们的球头。在车架,上连杆和轮座这三者所形成的三个极里,目前为止我们已经找到两个。那么第三个极必须处在这两极所成的直线上,这条线在下图用红线(靠上面那条)表示。

对悬挂系统的下部应用同样的推导过程,下臂与轮座的极是下臂的外侧转轴,下臂与车架的极则是下臂的内侧转轴,第三个极必然落在这两极所形成的直线上。这条线在下图依然用红线表示(靠下面那条)。如果你的车使用的是球头而不是转轴,那么两个球头间所成的直线可以当转轴看待。
RC2[1].gif

如果以上两条红线相交于点I的话,I就轮子/轮座与车架的极。I有时候称为“虚拟枢轴”,或者“实时中心”。这个极能给出悬挂系统运动的信息。

点I到轮胎中心的距离有时被称为摆轴长度(swing axle length),形象的说,轮子/轮座仿佛连在一条看不见的轴上绕I点转动。虽然有较长的摆轴长度就等同于使用
双叉臂类型的悬挂,但是现实中这样构造是非常不实际的。不过它提供了非常好的信息。摆轴长度与其角度,决定了内倾角在悬挂受压时的变化量。较长的摆轴使得内倾角变化较小,反之则较大。

如果上连杆和A臂是绝对平行的(延长线不会相交),那么图上的两条红线就不会相交,换句话说,I点,如果存在的话,离车架的距离将是无穷远。这并不会有什么问题: 在下图中,绿线和红线平行即可。

两条红线的交点总是在车架中心的边上,如果他们相交在外面,内倾角的变化会很怪异:内倾角会从负角变成正角,再回到负角;对抓地的一致性来说,这显然不是一件好事情。

轮子和地面当然也可以作相对运动。假定车轮可以围绕其接地点转动(这个接地点可以看为胎体的中点),这个点即是轮胎和地面的极。从图中可以看出,当车架滚动的时候可能发生这样一个问题:轮胎也有可能发生滚动,因而轮胎的接地点也有可能发生转移,尤其对胎体是方形那种不易发生形变的轮胎而言。

现在,我们可以再次应用肯尼迪定理:地面,轮子和车架这三者通过枢纽相联,我们已经找到轮子和地面的极,以及轮子与车架的极。如果存在一个车架与地面的极,那么它一定座落在以上两极所形成的直线上。这条直线在下图中以绿线表示。

RC3[1].gif

相同的步骤应用到悬挂系统的另一侧,如下图所示。同理,车架和地面的极点应该在绿线这上。两条绿线的交点就是车架和地面的极点(图中的紫色小圈)。
RC4[1].gif

紫色小圈,即车架和地面的极,就是车架的滚动中心。滚动中心为我们提供车架如何相对于地面运动的信息。虽然在理论上,车架可以保持静止,而地面绕着滚动中心转动。但事实正好相反,车架绕着滚动中心转动,而地面保持静止。滚动中心也是空间中唯一的一点,在这一点上对车施加外力而车架不会发生滚动。


滚动中心会随着悬挂系统的伸而移动,这就是为什么滚动中心实际上应该称为实时滚动中心。滚动中心之所以移动,是因为悬挂系统各部件之间的相对运动路径并不是一个完美的圆周,而更多是杂乱无章的。幸运的是每条路径都可以看为由很多很小的圆弧组成,所以车架是不是按一个完美的圆周来滚动倒不重要,只要把这个过程想像成为圆心会移动的一种的滚动就行了。

如果想测量车的滚动中心,可以用眼睛来勾画出以上提到的虚拟线段和交点。当然也可以找一张大纸把车的悬挂系统按比例画下来。

现在你知道你的车的滚动中心(简称RC)在哪了。让我们看看它是怎么影响车的操控性的吧。想象一辆车以恒定的速度和恒定的半径绕圈,这时候有一个惯性力会把车往圆心外甩。但是因为此时车子是动态平衡的,所以这里必须有一个相等的反方向的力把车往圆心拖,这个力即是轮胎的附着力。(从车的上方观察,这两个力如下图所示)
circ[1].gif

理论上,这个惯性力作用在车的质量上的每一点。通过引入重心的概念(简称CG),可以把所有的作用力集成为一个作用在重心上的合力,就如同全车的质量集中在空间的这一点上(重心CG)。同理,轮胎产生的力也可以当成一个作用在车的滚动中心上的合力。从车的后方观察,这两个力看起来是这样的:
RCCG[1].gif

两个相等但反向的力,作用在空间的两个不同点并由此产生一个扭力,这个扭力的大小就是这两个力的大小乘上这两个力之间的距离。可见这个距离越大,产生的扭力就越大。这个距离称为滚动力距(the roll moment)。因为这两个反向的力总是作用在水平方向上,因此滚动力距总是重心和滚动中心之间的垂直距离。(如下图红线所示)
romo[1].gif

这两个力所产生的扭力将会让车架绕滚动中心滚动。这种滚动将会持续下去,直到避震弹簧产生一个大小相当的反向扭力。在这里,阻尼器决定了滚动速度的大小。请注意,在这个例子中,车以恒定的速度和恒定的半径绕圈,因而这个滚动扭力是一个恒定值。但弹簧所产生的扭力却随着悬挂系统的压缩而变大(原理请参照“弹簧”一节)。这两个扭力的差别,或者说它们所产生的结果,就是让车架倾斜的原因。随着弹簧所产生的扭力增大,两个扭力间的差别将减少。因此,车架滚动的速度也随之降低,当两个扭力达到平衡滚动速度最终变成0。因此,对于一定的弹簧硬度,车过弯时,较大的滚动力距让车架滚动程度加大;反之,较小的滚动力距使得车架的倾斜程度减弱。因此,在任何时间点上,滚动力距的大小决定了
(造成车架过弯发生倾斜的)滚动扭力的大小。

现在,新问题来了。滚动中心的位置总是随着悬挂的压缩伸展而发生变化,多数情况下,这和车架的移动方向相同。因此如果悬挂被压缩,滚动中心的位置也会下降。

rcchange[1].gif

上面的小动画演示了滚动中心的高度的随着悬挂压缩而发生变化,重心的高度也稍稍发生改变。因此判断滚动力距的增减是非常困难的。

再者,当车过弯车架倾斜时,滚动中心通常会从车的中心线移出。(见以下两图中的黄色小圈)

rollbase[1].gif
RCcenter[1].gif

多数遥控车的上连杆长度以及安装位置是可以调节的,这样就可以改变车的滚动特性。下面的概括在多数情况下有普适性。在车高正常的基础上,上连杆与下A臂平行时,滚动中心会非常低,因此入弯时的初始滚动会很大。上连杆与车架的连接位置低于另一端的安装位置时(形成一个向车架下倾的角度),滚动中心的位置会较高,初始滚动也较小,使得车的这一头(车头和车尾有各自的滚动中心)入弯时非常急促。使用很长的上连杆的话,在车架倾斜时,滚动力距基本保持不变,车的这一头滚动程度较大。如果内倾角不是非常大(的负数)的话,过弯时内倾角将变成一个较大的正角,所以轮胎容易打滑。短的上连杆使得滚动力距(在车架倾斜时)变得较小,这样车架滚动程度不会太大。

到目前为止,我们都忽略了车有两套独立的悬挂系统(车头车尾各一套)这个事实:车头车尾都有各自的滚动中心。两套系统事实上由坚硬的车架相连,因此它们也能相互影响。有的车手在调车时会犯这样的错误:在调节车的一头的时候没有考虑到另一头。不用说这样调车会导致车操控的不正常。当然,在车架伸缩性较好的情况下,这一点不容易看得出来,但这绝对不是一个正常的作法。

毫无疑问,车头绕车头的滚动中心滚动,车尾则绕车尾的滚动中心滚动。如果车架较硬,车架就会绕车头和车尾滚动中心(紫色点)的连线滚动。这条线称为滚动轴(下图中的红线)。
rolax[1].gif

滚动轴的位置与重心的相对位置揭示了车的转向能力:它能预测车过弯的反应。如果滚动轴朝车头下倾(如上图),车头的滚动程度将比车尾大,车过弯时车头会更帖地一些;由于车尾的滚动力距相对较小,车尾的滚动也相对较小,因此车尾的车高基本不发生变化。请注意,如果车的下行程(droop)较小的话,车架倾斜时下沉得更为有效一些。在这种情况下,车头下沉车尾保持高度,更多的重量会向前轮转移,也就是更多的车头抓地,车容易过甩。反过来,如果滚动轴朝车尾下倾则容易发生转向不足。要记信,滚动中心的位置是动态变化的,因此滚动轴也会发生变化,特别是车过颠簸路或过弯的时候。所以非常可能车入弯滚动不明显时转向不足,在弯中却因车头滚动中心沉降而过甩。这个例子主要想说明如何应用滚动中心的特性去把车按手车的喜好和赛道的要求来调好。


Collapsar 超级元老 发消息
发表于 10-2-11 05:26:41 |显示全部楼层 来自: 加拿大
本帖最后由 Collapsar 于 10-2-11 11:03 编辑

一般来说,上连杆和A臂的角度决定了车的静态滚动中心的位置,而上连杆的长度决定了车架滚动时滚动中心高度的变化。长而且平行的上连杆使得车的滚动中心较低,而且车过弯时滚动中心也能保持非常低。因此,车(至少对车尾来说)滚动程度较大。长度较短的并向车架下倾的上连杆,滚动中心会很高,而且车架滚动时滚动中心能保持一个较高的位置,因此车架滚动程度较小。与此类推,短而平行的上连杆,车刚开始滚动很大,然后趋于减小,所以车初始滚动非常快,停止也很快。长且向车架下倾的上连杆,车的初始滚动小,全程变化也不大。

就车的操控而言,这意味着,车的哪一端(车头或车尾)上连杆向车架下倾程度最大(相对滚动中心最高),在入弯或出弯时,哪一端就有更多的初始抓地。而另一端(相对滚动中心较低),在弯中将得到更多的抓地。因此,如果想在弯中得到更多的转向,可以把车头的上连杆加长一些(当然,加长后别忘了调节内倾角)。如果需要更急促的入弯,和更多的低速转向,要么减少车尾上连杆的倾角,要么增大车头上连杆的倾角。

你可能会这么问自己:滚动中心是高还是低好呢?这完全取决于车的其它设置以及赛道的情况。但有一点是肯定的:在颠簸的路面上,滚动中心最好高一点,这样可以防止车过不平路而时过份
左右滚动,而且也使得采用较软的弹簧成为可能,令轮胎更好地保持与不平路面的接触。在平滑的赛道上,可以使用非常低的滚动中心,以及硬弹簧,由此提高车的响应速度和弹跳能力。更多的相关内容见第六章。



2.4 防蹲(Anti-squat)
(译者注:请参照http://www.rcfans.com/?p=164

下蹲说的是当车加速时车尾下沉的特性。防蹲是指后下臂转轴和水平线的夹角。它的目的是让车加速时减少下蹲。

增加防蹲角能提供更多的牵引力:车尾的重量(不是质量)在加速时会增加,特别是在加速开始的几米距离内;与此同时,由于车尾下蹲减少,车的油门转向能力提高。但是防蹲也有它的缺点,当车入弯时会趋向于变得很不稳定,尤其是车尾。减少防蹲角的效果则相反:更少的油门转向,当车加速减缓时能获得更多的后轮抓地,车尾在入弯时也更为稳定。防蹲也影响车过不平路的操控性:增大防蹲角让车加速过路面突起时更
,但它能增加车吸收震动的能力,减小防蹲角的作用则相反。


2.5 车高(Ride height)
合适的车高是极其重要的。太低的话底盘会经常触地,太高的话的滚动的风险将毫无必要的过大。前后车高一致是一个好的开始。升高或降低一端的车高将会改变转向的特性。车高最低的一端将拥有稍大一点的静态重量;更重要的是,滚动中心也会降低,使得车的这一端在入弯时滚动较大。从而使车沉降更低并由此获得更多的抓地。你应该知道改变车高的同时也改变了车的下行程量,由下一节可以看出,这种改变是有严肃后果的。


2.6 悬挂行程(Suspension travel)
悬挂的下行程量对车的操控影响巨大。它直接影响车架的滚动总量和抬头的程度。

在下面的动画,我们看到这辆车入弯时产生很大的下行程,车架自由滚动,重心的高度没有太大变化。

rolnlim[1].gif

在下面的动画, 我们看到这辆车入弯里几乎没有下行程,车架被下拉,重心也因此降低。
rollim[1].gif

因此,如果车的一端比另一端的下行程少的话,这一端入弯时将被下拉得更多,也即是给于这一端更多的抓地,特别是在弯中重量转移最为显著的时候。如果车头有非常小的下行程将会得到更多的转向,特别是高速或者急促入弯时。如果车尾的下行程非常小则在整个弯里获得更多更连贯的抓地。

这还不是事情的全部:悬挂的行程还影响车纵向的平衡,即刹车或加速时的纵向平衡。下行程大的一端将能升得更高,车架抬头也更为显著,相应的产生更多的重量转移。例如:如果车头有很大的下行程,在急加速时它能升高更多,并把更多的重量转移到车尾;于是车将有非常少的转向,和非常多的后轮抓地。如果两端的下行程都很大,再加上使用较软的弹簧,这样会导致非常大的重量转移:给油时推头,松油时过甩。根治的办法很简单,要不减少弹簧下行程,或者使用较硬的弹簧。

弹簧行程太小也有不好的地方:
簸路面的操控,以及车的弹跳能力都会受损,因为车底盘容易触地。
Collapsar 超级元老 发消息
发表于 10-2-11 05:26:48 |显示全部楼层 来自: 加拿大
本帖最后由 Collapsar 于 10-2-11 11:13 编辑

2.7 防倾杆 (Anti-roll bars)

(译者注:请参照http://www.rcfans.com/?p=162

swaybarF[1].gif

防倾杆就象水平的弹簧,它们只在横向(非纵向)上起作用。它们的工作原理是:如果悬挂的一边被压缩,防倾杆的这一边将被抬起,另一边也相应被抬起并压缩另一端的悬挂。总的来说就是抑制车架的滚动。另一端被提升的程度取决于防倾杆的硬度和粗细。比较细的防倾杆伸缩性强,所以它不能把另一端提得太高,从而让车架的滚动随着悬挂行程的增大而增大。防倾杆只有在悬挂的一端的伸缩大于另一端的时候才会工作,比方说车在过弯时。当两端被同程度的被压缩,如刹车时,防倾杆是不起作用的。因此防倾杆只影响车在横向上,而不是纵向上的平衡。不幸的是,防倾杆不是唯一影响滚动硬度的因素,它们与弹簧和阻尼器共同起作用。正常情况下,当车入弯时,车架开始滚动,悬挂系统外侧一端将会压缩,内侧的一端则会伸展,这样一来,更大的压力作用在外侧轮胎上。如果你在车尾安装防倾杆,但不改变车的其它设置。这时入同样的弯时,悬挂系统内侧也会被压缩,由此车架滚动减少,车尾沉降得也比正常情况下更低,即车尾得到更多的重量,而且比较均衡地分布在车尾的两个轮胎上。这一来,后轮抓地更多一点也更连贯。记住这只是转弯的开始的情况,在弯中又有所不同。正常情况下,如果没有防倾杆,当滚动扭力被外侧弹簧完全吸收车架会停止滚动。如果安装了防倾杆,一些扭力将被防倾杆吸收用于压缩另一端的悬挂。这样一来,外侧悬挂的压缩程度就不会象没有安装防倾杆时的程度一样大,这时车尾位置较高,也就是说更少的重量座落在车尾,而更多的重量在车头。仿佛就象车尾突然变硬一样,由此得到更多的转向以及更少的后轮抓地。后轮抓地变得更为连贯,因为重量比较均衡地分布在两个后胎上。路面比较颠簸时,防倾杆反而会破坏车的操控性,所以在颠簸的路面上极少使用防倾杆。在车头安装防倾杆有类似但相反的效应。它减少转向,但转向变得更平滑更连贯。它能防止车头过份下沉,使得转变半径变大和平滑。这一点在大而宽的赛道上非常有用。

在数学的角度上看,防倾杆中段的扭转硬度与防倾杆的直径的四次方起正比;而防倾杆两端,扭转硬度与防倾杆的直径的平方起正比。选择防倾杆的时候应该以这些特性为准绳。



2.8 避震的安装位置 (Shock mounting locations)
b3frshok[1].gif

多数遥控车都提供数个避震安装位置,包括上端(上图1区)以及下端(上图3区)。避震在不同安装位置的弹簧特性是不一样的。问题是,这些安装位置如何影射车的操控和感觉呢?这了更好地理解这一点,我们首先得先了解轮系数(wheel rates).

轮系数(wheel rate)相当于轮子上的弹力系数:由此决定什么样的弹簧能给出同样的硬度,这里以轮子的中心为出发点。毕竟,抓地力的是作用在轮子上的。
whrte[1].gif

轮比的数学表示:运动比² x 弹力系数 x sin(弹簧角度),运动比(motion ratio)是指避震下端安装位置和A臂内转轴的距离(D1),除以车轮中心到A臂内转轴的距离(D2)。而弹簧角度指弹簧与下A臂所形成的夹角。

公式可以进一步写成: 轮系数(wheel rate) = 弹力系数 x (D1 / D2)² x sin(a)

这个公式告诉我们两件事:
1. 避震越倾斜(a越小,则sin(a)也越小),则轮比越小(软)。
2. 避震下端安装位置越靠近车架,则轮比越小(软)。

如果改变避震下端的安装位置,弹簧角度和运动比(motion ratio)也同时改变,但通常是运动比的改变更为显著。这也可以从公式中看出:运动比毕竟取了平方嘛。同时,悬挂行程也随之改变,这同样也影响车的操控。

避震的角度并非恒定的,相反,它随着避震的压缩而增大。这种效果在避震越平(a接近0度)的时候越明显。因此,避震越倾斜(向水平方向靠拢),轮系数越趋渐近性。所以,改变避震的上安装位置可以作为微调弹簧和阻尼系数以及改变渐近性的手法。

请记住,这并非全然无误:如果轮胎的中心线与A臂外转轴不相交的话,作用在轮胎上的外力有相当大一部份会通过上连杆转移到车架上。不过,这只是一种比较好的近似而已。

即然弹簧角度改变渐近性,它也影响避震杆速:如果避震水平安装(渐近性),避震杆速会随弹簧压缩而增大。如果避震竖直安装(线性),避震杆速改变不会太大。显然,这也影响高速阻尼,当从低速向高速转换时。如果避震接近垂直安装,这也会更早地发生;这是因为当其倾斜安装时,避震杆为达到同等的速度,需要一定的时间为避震杆加速。因此避震较斜安装,与使用较大的活塞孔有非常相似的效应;类似的,避震较竖直安装,与使用较小的活塞孔的效果也是一致的。

我发现,当你想改变避震的负行程(向下行程),但又不想改变它的长度;或是当你想让弹簧的感觉硬一点或软一点时,改变避震下安装点有时是很实用的。改变避震上安装点的效果非常微妙,我通常在车更重要的设置已经做好了,并且车调得差不多满意以后才做这一步。当想改变车入弯的感觉时,改变避震上安装点非常有用。虽然我不知道在弹簧非常具有渐近性的前提下这个说法成不成立,但避震越竖直,入弯的动作就越直接。比如:如果前避震接近垂直,而后避震位置较水平,车会有更多的入弯转向,车的响应速度很快。如果前避震接近水平,而后避震位置较垂直,车入弯时转向能力不会大,但在弯中却会较大,看起来象是过一个方角一样,有时候车尾甚至会开始打滑。这就象使用硬弹簧或硬阻尼一样:如果使用硬弹簧,或硬前阻尼,入弯的初始动作会很急促;而弯中车多半会推头,不管如何,入弯的起始动作决定了车的响应速度。甚至滚动中心也是类似的:非常高的前滚动中心使得车转向急促,但弯中推头。
如果你喜欢车急促入弯的感觉,这看起来相当不错;但我很怀疑这种方法能让你的车在赛道上开得最快;相反,如果车尾滚动中心很高,车的转向会很柔和,也很可能会随之甩尾。


(第二章完)





wyw1976 终极 Fans 发消息
发表于 10-2-11 10:06:39 |显示全部楼层 来自: 中国上海
专业。。。。。。
陆耀明 论坛元老 发消息
发表于 10-2-11 10:40:03 |显示全部楼层 来自: 中国北京
哪里弄的啊............能当老师了   收我这个学生吧...................
kyc 金牌 Fans 发消息
发表于 10-2-11 10:55:07 |显示全部楼层 来自: 中国浙江杭州
一到漂移区就看见如此强帖...........我顶............
Collapsar 超级元老 发消息
发表于 10-2-11 11:15:24 |显示全部楼层 来自: 加拿大
哪里弄的啊............能当老师了   收我这个学生吧...................
陆耀明 发表于 2010-2-11 10:40


原文出处在这里:http://bbs.rcfans.com/viewthread.php?tid=254617
Collapsar 超级元老 发消息
发表于 10-2-11 11:25:23 |显示全部楼层 来自: 加拿大
能当老师了   收我这个学生吧...................
陆耀明 发表于 2010-2-11 10:40


只是翻译而已,虽说自己是完全看懂了,但活学活用又是另一个层次了,所以我做不了你的老师。:)
autohero 长老 Fans 发消息
发表于 10-2-11 15:42:40 |显示全部楼层 来自: 中国辽宁沈阳
受益匪浅    顶了
您需要登录后才可以回帖 登录 | 注册

广告投放|联系我们|手机|投稿|Archiver|About us|Advertise|遥控迷模型网|RCFans ( 粤ICP备10210518号-1 )

版权所有 RCFans.com © 2003-2016

返回顶部