本帖最后由 Collapsar 于 10-2-20 21:30 编辑 第三章 校正(Alignments): http://bbs.rcfans.com/viewthread.php?tid=255728 第四章 重量转移 车有一个静态的重量(当车没有运动时),这个重量的分布将在第六章讲述。牛顿第二运动定律说(力是产生加速度的原因):力 = 质量 x 加速度。这暗示着当车往任何方向加速时,一定存在一个外力的作用。比如:从从弹跳后降落后,它的向下速度极速减少,基本上,车是突然停止降落的。此间的外力大小正是车的质量与其加速度的积。 数字化表达是这样的,比方说:车已经下落了一秒钟,在它落地前一瞬间,它的向下速度是 G(重力加速度)x 1秒 = 10米/秒。再假设车的质量是1公斤(即10牛顿),假设悬挂系统需要0.1秒的时间来吸收外力。 这时个作用在轮胎上的力将是(10牛顿 x 10米/秒) / 0.1秒 = 100牛顿 = 10公斤。换句话说,在车触地的一瞬间,它的重量是10公斤,而不是1公斤(译者注:原作者以上运算有误,但不影响他想说明的道理)。 我想要说的是:车的重量,也即轮胎的承重,随时在发生变化。但车的质量是恒定的,前提是忽略不计爱因斯坦相对论。相对论效应在这里如此之小,当然可以放心地忽略掉;除非车速接近光速了,如果是这样的话,这篇文章可帮不了你。:-) 额外的力必然存在,如果存在加速度的话;或者说,当车的速度大小或方向发生变化的话。你或者会问,为什么这个结论这么重要?很简单:每个轮子的承重决定了它的抓地能力,也即决定了车的操控性。可以毫不过份说,控制重量转移对赛车而言是至关重要的一件事,也是分辩好车手和平庸车手的试金石。随时掌握车的重量分布和控制轮胎工作在极限范围之内,是能否把车开得最快的重要因素。 比赛发生在三维空间里,所以重量转移发生在三个维度上。车上下运动时,重量增加或减少。由于地心引力的缘故,垂直方向这个维度与其它两个维度稍微有点不同:车的重量可以从正常值(如在平路上)变为几倍于原来的大小(如上坡或过地面突起),也可以发生失重现象(如腾空而起),或低于正常值(如下坡或通过地面突起后)。不要忘了,方向向下的力都可以增加车的重量。幸运的是,在水平面上的两个维度,车的总重量是恒定的,重量只能从一端向另一端发生转移。比方说车加速时,重量从前轮向后轮转移(经度),但总体重量不变。过弯时道理也一样,只是方向不同而已,这时候重量是从内侧轮胎向外侧轮胎转移(纬度),车的总重量依然保持不变。为了简单起见,从现在起,让我们暂时忘掉垂直的维度,并假设路面是绝对平整的吧。 上图中,车的重心在车的正中央(紫色点)。在一段完全平直的路上,它随车一起做匀速运动(如果车静止,那么这个速度是0),这时候四个轮子承重是相同的。如果车的重量用W来表示,刚每个轮子的承重是W/4。 注意: 上图只是一种粗浅直观的表达,青色箭头代表轮胎的承重。 4.1 横向重量转移(Lateral weight transfer) 上图中,同一辆车在做转向。 它依然以恒定的速度开在一个完全平整的路面上,只是速度的方向(注意速度是一个矢量,具有方向性的)发生变化了。这时候转弯半径也是一个恒定值。 首先,上图没有画出所有的力,不然画面就被线条充满了。每个轮胎上都存在一个水平方向的力,这四个力与黄箭头所代表的力相抗衡。这四个力其实就是抓地力。这幅图也没有画出重力(应该从车的重心向下指)。 黄色箭头代表的是离心力。这个力由车(转向)的惯性产生,作用在车的重心上,方向由弯心外指。这对车架产生一个扭力,从牛顿第三定律(作用力反作用力定律)可见,这时必然存在一个反作用力。这个反作用力得以存在是因为此时此刻车外侧的轮胎承重比内侧的要大。因为车的总重量是不变的,车内侧减少的重量全都加到了外侧。换句话说,车的重量向弯的外侧(远离弯心的一侧)发生转移。 重量转移的结果是非常重要的。各轮胎承重不均通常意味着总体抓地力的减少,并导致过弯能力下降。而且,上面提到的扭力会让车架发生滚动。在这个简单例子中,由于没有悬挂系统,车架不会发生滚动;当然,如果车的重心正好落在滚动轴上,车架也不会发生滚动。无论如何,车架滚不滚动并不影响重量的转移量(前提是车架滚动时重心的位置变化不大),但它决定了大部份重量将会被转移到哪里。当然,在这个例子中是显然的:从车的的左前方减少的重量将会转移到车的右前方,从车的的左后方减少的重量将会转移到车的右后方。上面的说法在这个简单例子中是成立的,因为车是对称的,并时刻保持对称(因为没有悬挂系统)。但现实中真车的情况就不一样了,设想车尾比车头滚动要大(车尾的滚动中心非常低或者车尾弹簧非常软),更多的重量将会转移到右后轮;右前轮也会得到一些重量,但数量会小一些;这样就会导致推头(转向不足)。在加速和刹车时,重量在车头和车尾间同样发生转移;这就是为什么当车推头时可以用刹车来稍稍纠正;因为刹车时,重量向车头转移,使得前轮得到更大的抓地,从而帮助实现转向。综合考虑,判断有多少重量会发生转移不是一件容易的事情。太多因素参与其中,如弹簧系数,防倾杆硬度,滚动中心的高度,悬挂系统行程等等。 首先,让我们看看到底有多少重量发生了转移。重量转移量很容易推算出来,本质上,两个轮胎承重的差异,等于离心力(黄箭头)乘于重心的高度,再除于车的轮距;(应用牛顿第二定律)而离心力的大小等于车的向心加速度乘以车的质量;向心加速度则从车速的平方除以转弯半径求出。 由上面文字表达的演算公式,我们可以推断重量转移量与重心的高度成正比,而与轮距成反比;这正是为什么通常赛车的底盘总是尽可能的低,轮距尽可能的大的原因;这样使得重量转移尽可能小,从而防止抓地的丧失。重量转移量还与车的静态质量成正比,这也是为什么赛车的质量都尽可能地轻,同样是为了尽可能避免重量转移。重量转移量还会受到来自车架之外的因素影响,如车速,转弯半径等。重量转移量和转弯半径也成正比这个事实,就是为什么大而平滑的弯是最快的过弯路线的原因之一:因为它把重量转移尽可能减少,从而得到最大的抓地和过弯能力。 4.2 纵向重量转移(Longitudinal Weight Transfer) 纵向重量转移和横向上的道理是一样的,只是方向不同罢了。上图中,车在平路上直线加速(白色箭头)。换句话说,速度在增加,或者说速度矢量的方向不变但值在增大。为了简单起见,一些力没有画来出,如牵引力,地心引力等。 物体加速时,存在一个作用在重心的惯性力(黄箭头),因此产生一个扭力,这个力由车头到车尾的重量转移来抗衡。从车头减少的重量将加到车尾,只要加速保持在直线上,这个重量转移是对称的(左前到左后,右前到右后)。后轮承重增大对后驱车直线加速来说是件好事,但由于车头重量损失,车会严重推头。同理,在横向重量转移上,由于车轮承重不均,整体抓地会减少。这就是为什么最快的过弯方法是即不加速也不减速(刹车)。不言而喻,车在总体上是应该非常平衡的, 即不推头也不过甩。注意,重量转移和车的抬头角度无关:刹车时车可能会下潜(车头点地),加速时则可能下蹲(车尾点地),但重量的转移量不受影响。当然,车的重心位置改变非常大的情况除外。这种情况在车悬挂的负行程(下行程)很大时会发生。设想一辆车抬头很高,但下蹲不多;这时车的重心会稍稍升高,从而导致更多的重量转移;重心升高,更多的重量转移,更多的后轮抓地,车头升起更多,...这简直就是雪崩效应。 重量转移量的计算公式与横向上的计算方法是非常相似的。只不过现在变成了惯性力乘以重心的高度再除以轴距(相较于轮距);而惯性力则等于向前或向后的加速度乘以车的质量。所以低重心,长轴距使得纵向重量转移量较少。与往常一样,重量转移量与加速度成正比。 前面解释过了,为什么赛车通常低而且宽。因此你可能会猜,车也应该尽可能的长,但事实并非如此。以后驱车为例,车后轮承重更多利于加速。加速时有点推头但车尾的额外重量能防止车轮打滑空转。另一个原因是,车的轴距过长,过低速小弯时倾向于迟钝,缺乏敏捷。因此,一般来说,长的轴距用在大而平滑的高速赛道上较佳,而短轴距则适用于小弯多的赛道。 第四章完 |
“但现实中真车的情况就不一样了,设想车尾比车头滚动要大(车尾的滚动中心非常低或者车尾弹簧非常软),更多的重量将会转移到右后轮。”这个好像有点问题。 通过弹簧和防倾杆实现的重量转移称为rolling overturning moment,但还有一部分是通过上,下A臂实现的,称为nonrolling overturning moment,侧倾中心(滚动中心)越高nonrolling overturning moment越大。总的效果是车尾的侧倾中心(滚动中心)比前面低,更多的重量将会转移到右前轮。右后轮也会得到一些重量,但数量会小一些;这样就会导致推头(转向不足) |
广告投放|联系我们|手机|投稿|Archiver|About us|Advertise|遥控迷模型网|RCFans ( 粤ICP备10210518号-1 )
版权所有 RCFans.com © 2003-2016